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❑ Moore’s Law scaling and the energy crisis

❑ Beyond-CMOS devices for lower energy

❑ Spintronics materials and devices 

❑ Ferroelectric and multiferroic materials and devices

❑ Benchmarking of beyond-CMOS devices
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Moore’s Law

Seminar at Princeton Plasma Physics Laboratory

Double the number of 
transistors on a chip 
every 2 years.

Moore’s Law is Alive 
and Well
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CMOS Supply Voltage - Historical Trend

0.7V

5.0V

Dennard scaling

1986 2018

Seminar at Princeton Plasma Physics Laboratory

In the last 15 years voltage scaling is stalled
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CMOS Challenge With Energy

Semiconductor industry faced the power crisis before with 
bipolar transistors

Source: Chen (IBM), ISS Europe, 2007.
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Energy Crisis

❑ Exploding demand for computing due to 
datacenters, AI

❑ Required energy will approach a few % of world 
production by 2030

❑ CMOS business as usual will lead to stalling IT, 
deficit of computing

❑ Need more energy efficient devices to continue 
sustainable development, curb carbon emissions

Seminar at Princeton Plasma Physics Laboratory

SRC, Decadal Plan for Semiconductors, 2021
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Collective States = Energy Efficiency
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Particles Ne = 200 electrons Ns = 10000 spins

Sw. Energy Limit 4000kT = Ne*20kT 60 kT
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2  Collective States = Non-Volatility

Charge Electric
Dipole

Magnetic
Dipole

Orbital 
State

Class Variables Example

Charge Q, I, V CMOS, TFET

Electric Dipole P FeFET 

Magnetic Dipole M, Ispin ASL, SWD, NML

Orbital State Orb, Bose condensate BisFET

Strain s PiezoFET

e-

Strain

Can have non-volatile states at room temperature
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Tunneling FET- multiple!!!

Beyond-CMOS Devices, part 1

Electronic

Orbitronic
Graphene pn Junction

BisFET

MITFET

ITFET

Straintronic

PiezoFET
FEFET

Negative 
Cap FET

Ferroelectric
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Beyond-CMOS Devices, part 2

Spintronic

SpinFET
All Spin Logic

Spin Majority Gate

Spin Wave DeviceNano Magnet Logic

spin-current

spin-torque
e

e

Domain Wall Logic

Spin 
Torque
Triad

Spin 
Torque
Oscillator

Charge-spin 
logic
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Vd
P+ i-InAs N

Vg Gate

Source Drain

Tunneli
ng 

barriers
Courtsey M. Luisier (Purdue) 

M. Luisier and G. Klimeck, EDL, 2009 

Tunnel FETs operate by 
tunneling through the S/D 
barrier rather than 
diffusion over the barrier

Two required conditions:

• Thin enough barrier over 
a large enough area for 
effective (high current) 
tunneling. 

• Sufficient density of 
states on both the 
transmission and 
receiving sides to 
provide energetic 
locations for the carriers. 

Tunneling Field-Effect Transistor
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TFET Sub-threshold Slope

Tunneling probability increases sharply at the onset of Source 
Valance Band and Channel Conduction Band overlap
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Magnetoresistance

Seminar at Princeton Plasma Physics Laboratory

Ferromagnet (FM)

Magnetoresistance definition 
AP P

P

R R
MR

R

−
=

Parallel Anti-parallel

FM

current

AP PR R Resistance of the stack with anti-parallel 
magnetizations is higher

magnetization
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Spin transfer torque

current

electron
flow

2 1( )a  1 1( )a  

1 1( )b  
2 2( )b   +

3 2( )a  

torque

torque

Electrons get transmitted and reflected at 
the barrier
Each brings a unit of spin ћ/2
Combined transfer of angular momentum 
is torque, which rotates magnetization

M

p

M = magnetization of free layer
p = polarization of injected 
electrons from pinned layer
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Spin-Orbit Torque for Low-Power
❑ Need: Operate memory and logic at 

0.1V supply.
❑ Method: Macrospin switching by 

spin-orbit effect + spin drift-diffusion.
❑ Result: Spin-orbit effect produces 

faster magnetization switching at 
much lower voltage and energy than 
Spin transfer torque.

S. Manipatruni, D. E. Nikonov, and I. A. 
Young, Appl. Phys. Exp. 7, 103001 (2014). 
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Multiferroic BiFeO3

BiFeO3

• Ferroelectric (FE) below TC = 1100 K

• Fe atoms shift to corner of the cube in E-field

• Antiferromagnetic (AFM) below TN = 640 K

• Spins on Fe interchange in direction

• So far one of 3 room temperature multiferroics

Coupling of electric and magnetic above room temperature

Fe

Bi

O

Fe

Fe Fe

Fe
Fe

Fe
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Anti-Ferromagnetic Order, L

Fe

Fe Fe

Fe
Fe

Fe

❑ Superexchange = electrons hop Fe – O – Fe

❑ Forbidden if spins are parallel

❑ Lower energy if spins are anti-parallel, two sub-lattices M1 and M2

❑ G-type anti-ferromagnetism = spin reverses along all cubic directions

❑ AFM vector L, along the line of spins 

Fe Fe

L

M1

M2
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Canted Magnetization, Mc

❑ Oxygen octahedra are not 
straight (Jahn-Teller distortion) 
but tilted

❑ If an oxygen is shifted from 
the straight line, modified 
exchange = Dzyaloshinskii-
Moriya interaction (DMI)

❑ The two neighbor spins are not 
exactly opposite. Resulting 
“canted magnetization” Mc

❑ P, L, and Mc perpendicular to 
each other, right tripleL

M1

M2

Mc

=P

Seminar at Princeton Plasma Physics Laboratory19



Magnetoelectric Switching

Seminar at Princeton Plasma Physics Laboratory

❑Magnetoelectric effect = voltage-
controlled switching of magnetization 
(charging a capacitor)

❑More energy efficient than charge-
controlled switching (spin torque)

❑ Magnetoelectric multiferroic, BiFeO3
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Bi2Te3

2D Layered TI

Topology 
of Berry Phase

Conduction Band

Surface States

Valence Band

Typical Insulator Topological Insulator

Topological Insulators 

Large spin orbit coupling and inverted valence and 
conduction band states result in spin momentum locked 

surface states which have large 𝜽𝑺𝑶𝑪. 

k±

𝑗𝑐

𝑗𝑠

kx

ky

𝜽𝑺𝑶𝑪 =
𝒋𝒔
𝒋𝒄
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Spin to Charge Conversion with Spin-Orbit

❑ High efficiency spin to charge conversion using spin orbit effects.
❑ Read off of the magnetization state.

FM

Ag

Bi
Ispin

Icharge

FM

Ag

Bi
-Ispin

Icharge

Edelstein, V. M. Solid State Commun. 73, 233–235 (1990)
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ZPL90 in-situ deposition of Full MESO device stack: ME and SO Films

Multiferroic films (ME) in PLD chamber; magnet, heavy metal and TI films (SO) in PVD chamber

5.6 nm Sb2Te3

2.6 nm W (insert) 

2.2 nm MgO

3.0 nm Ta cap

PLD
PVD
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Sub-100mV Logic Device Research Based On
Magneto-Electric and Spin-Orbit Effects (MESO)

Ref. [1]: Intel Components Research, Nature 565 (7737), 35-42 (2018).  
Ref. [2}: Intel Components Research, IEEE IEDM, pp. 37.3.1-37.3.4 (2019).

MESO enables 4 CMOS nodes/generations of 
energy efficiency improvement same CMOS node.

BiFeO
3

CoFe
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Spintronics 
enables 

lower voltage

CMOS Ref

Electronic

Spintronic

Ferroelectric

Orbitronic

Straintronic

Ref: D. E. Nikonov and I. A. Young, IEEE JXCDC, vol. 1, pp. 3-11, Dec. 2015.

Inputs to Benchmarking – Lower Voltage

Seminar at Princeton Plasma Physics Laboratory

MESO    
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Lower Voltage = Best Path for Low Energy
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Slower, 
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Throughput vs. Capped Power
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Electronic
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TIOPS = Tera Integer Operations Per Second 

Tunnel FETs:
Rival CMOS in  

throughput at lower 
power.

Magneto-electric 
Spintronic:

Very low power.

Cap=10W/cm2
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Take-Aways

❑ Moore’s Law scaling of integrated circuits give exponential improvement of 
computing capacity but leads to the energy crisis

❑ Beyond-CMOS devices can switch at lower energy and promise the solution of the 
energy crisis

❑ Spintronics devices are based on spin torques 

❑ Ferroelectric and multiferroic devices utilize lower energy switching of non-volatile 
order parameters

❑ Benchmarking of beyond-CMOS devices was developed and used for identifying 
promising devices, such as MESO

Seminar at Princeton Plasma Physics Laboratory28



BACKUP
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Nanomagnet Energy Barrier

Magnetization angle

Energy

60kT

 / 2 0

Energy barrier not lowered = reason for non-volatility
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CMOS Challenge With Energy

• As CMOS scales -> energy/op decreases.
• But energy/op not decreasing fast enough (for 2x increase transistors/cm2)
Power density approaches a Power Density constraint  

* Source Intel: Projections based on best device data in papers published by Intel at IEDM in 1994 to 2014. 
Nikonov, Young, Benchmarking Method. 

103 104 105

Delay, ps

102

103

104

105

106

E
n

e
rg

y,
fJ

32bit ALU

350nm   

250nm   

180nm   

130nm   

i90nm   
i65nm   

i45nm   

i32nm   

i22nm   

i14nm   

10-3 10-2 10-1 100 101 102

Throughput, TIOPS/cm
2

100

101

P
o

w
e
r

D
e
n

s
it

y,
W

/c
m

2

32bit ALU

350nm   

250nm   

180nm   

130nm   

i90nm   

i65nm   

i45nm   

i32nm   

i22nm   
i14nm   

Seminar at Princeton Plasma Physics Laboratory31



Magnetoresistance and Its Uses

Seminar at Princeton Plasma Physics Laboratory

Nobel Prize 2007, physics

A. Fert P. Grunberg

1000x capacity of hard drives

Magnetic 
memory, 

embedded?
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Nomenclature of Beyond-CMOS Devices

Seminar at Princeton Plasma Physics Laboratory33



Majority Gates = More Efficient Compute

Adder = 28 transistors (at least)

… or just 3 majority gates 
(Nanomagnetic Logic)

… or just 2 majority gates (All Spin 
Logic)

… or just 1 majority gate (Spin 
Wave Devices) !

Fewer devices for same computing function

Seminar at Princeton Plasma Physics Laboratory34



Full MESO Operation Animation
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Beyond-CMOS devices require CMOS
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pst fe 70

Electronic vs. Ferroelectric Circuits

ICVt ddel 

2

ddel CVE 

Switching time

Switching energy
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ddfe QVE 

Charging, intrinsic time

Switching energy
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Current driven - spin torque 

Voltage driven – magnetoelectric
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Treatment of Interconnects
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Levels of Simulation

1st principles 2nd principles 3rd principles

Many-body quantum 
mechanics. E.g. Density 
Functional Theory

Numerous tools

Atomistic energies and 
coupling constants. 
E.g. Tight-binding

Prof. Iniguez 
(Luxembourg)

Continuous medium. 
E.g. Landau-
Khalatnikov eqs. 

Intel

Today
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Surface Exchange In the Heterostructure

Macrospin (i.e. no spatial variation, no exchange stiffness)
All m are unit vectors. The two sublattices equivalently 
described: 
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Exchange Bias and Exchange Coupling
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Exchange bias
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Magneto-Electric Spin-Orbital (MESO) Device

Magnetoelectric 
(ME) input

Spin-Orbital 
(SO) output

Seminar at Princeton Plasma Physics Laboratory

❑ The way to lower switching energy 
E~CV2, is lowering voltage

❑ 12 years of research in the 
Semiconductor Research Corporation 
(SRC)

❑Magnetization switching can be done at 
lower voltage (~0.1V)

❑ Non-volatility of logic = built-in 
registers and latches = added benefit

S. Manipatruni et al., Nature 565 (7737), 35-42 (2019).
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Insert’s effect on spin to charge conversion efficiency

Depending on the sign of spin orbit coupling of the new surface states they can 

enhance or reduce 𝜽𝑺𝑶𝑪. Doping in TI needs careful study but is promising.

Topological Insulator 𝜃𝑆𝑂𝐶 α Δ𝑘

Topological Insulator
+

Insert

𝜃𝑆𝑂𝐶 α Δ𝑘1 − Δ𝑘2 + Δ𝑘3
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Spin Orbit Module – Reads Magnetization

Direction of the magnet controls the direction of the charge output
Direction of current determines the sign of input voltage for next stage → Cascading

Ferromagnet

Tunnel Barrier

SOC Material 

Interconnect

ICharge

ISupply

+VOut -VOut

ISupply

ICharge

-VOut +VOut
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Spin Orbit Module – Material Functionality

Ferromagnet

Spin orbit coupling material

→ Resistivity: 𝝆𝑺𝑶𝑪

→ Spin to Charge efficiency: 𝜽𝑺𝑶𝑪

→ Spin diffusion length: 𝝀𝒔𝒅

→ Polarization :𝑃𝐹𝑀

Geometric Factors

𝛥𝑉𝑖𝑆𝑂𝐶
𝐼𝑆𝑢𝑝𝑝𝑙𝑦

= 𝑃𝐹𝑀 𝜌𝑆𝑂𝐶 𝜃𝑆𝑂𝐶 𝜆𝑠𝑑
1

𝑡𝑆𝑂𝐶𝑤𝑆𝑂𝐶
tanh

𝑡𝑆𝑂𝐶
2𝜆𝑠𝑑

Topological Insulators have high 𝝆𝑺𝑶𝑪 and large 𝜽𝑺𝑶𝑪𝐼𝑆𝑢𝑝𝑝𝑙𝑦 = 10𝜇𝐴

ICharge

ISupply

Gnd

ΔViSOC

Seminar at Princeton Plasma Physics Laboratory 46



0

0.5

1

1.5

2

2.5

𝜽𝑺𝑶𝑪 Measurement Results for Topological Insulators
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Spin Torque - FMR

Topological Insulators have large 𝜽𝑺𝑶𝑪
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Optimizing Spin to Charge conversion in TI

Doping TI with insert layer can protect the surface states and also enhance 𝜽𝑺𝑶𝑪.

PRL 116, 096602 (2016)

Zero SOC Large SOC

Nature Physics 7, 32–37(2011)

1 Surface State 5 Surface States

Seminar at Princeton Plasma Physics Laboratory 48



Delay vs. Area
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Spintronics is 
slower than 
electronics, 

but more compact

If power per area exceed the cap (10W/cm2),
effective area is rescaled to be larger
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Exchange Bias and Exchange Coupling

❑MESO is >10x lower energy than 
high-performance CMOS

❑ At the expense of slower speed

❑Went through this trade off around 
1990: transition from bipolar to 
CMOS transistors

D. E. Nikonov and I. A. Young, IEEE J. Explor. Comput. Devices and Circuits 1, 3-11 (2015).
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Exchange Bias and Exchange Coupling

❑ CMOS is limited by dissipated 
power density

❑ Exhibited as the capability to 
remove heat from the chip, but 
mostly power available to the data 
center

❑MESO is not limited by power, can 
achieve higher computing 
throughput (!)

S. Manipatruni et al., Nature 565 (7737), 35-42 (2019).
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